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Abstract— This paper presents a study that compares the
efficacy of Neuro-Evolution (NE) versus Particle Swarm Opti-
mization (PSO) for evolving Artificial Neural Network (ANN)
controllers in an unsupervised adaptation process. The research
objective is to ascertain which adaptive method is most ap-
propriate for deriving agent behaviors in a competitive co-
evolution pursuit-evasion task. This task requires one predator
agent to capture one prey agent in a simulation where behavior
adaptation is guided by an arms race of competitive co-
evolution. Results indicate that NE was overall more effective
at deriving pursuit and evasion behaviors according to the task
performance measures defined for this study.

I. INTRODUCTION

The use of competitive co-evolution to facilitate emergent
behavior [15], [31] via harnessing arms race dynamics
[5], [9] is a well explored research area in pursuit-evasion
tasks [30], [24], [16] and related predator-prey simulations
[4], [23], [20]. However, the application of Particle Swarm
Optimization (PSO) as a means of agent controller adaptation
within competitive co-evolution pursuit-evasion simulations
has received relatively less research attention. Furthermore,
there has been little research that compares PSO and Neuro-
Evolution (NE) as an Artificial Neural Network (ANN)
controller adaptation mechanism in pursuit-evasion tasks.

Simulated competitive co-evolution systems often attempt
to replicate an arms race [31], [33] process in order to
develop increasingly sophisticated behaviors. Various ap-
proaches to agent behavior adaptation in pursuit-evasion
tasks have been studied within a competitive co-evolution
context. For example, Koza [18] applied genetic program-
ming techniques to the co-evolution of behaviors in a two-
player pursuit-evasion task. In similar experiments, Reynolds
[30] reported the evolution of increasingly sophisticated be-
haviors in the competitive co-evolution of pursuer and evader
agents. Cliff and Miller [4] co-evolved behaviors in evolu-
tionary robotics, where simulated robots co-evolved vision
morphologies and behaviors as a means of improving pursuit
and evasion behaviors. Floreano and Nolfi [24] evaluated a
competitive co-evolution pursuit-evasion task within evolu-
tionary robotics experiments using two mobile robots. The
authors found that competitive co-evolution enabled faster
evolution of more diverse pursuit and evasion behaviors,
comparative to a standard evolutionary approach.

To the best of the authors’ knowledge, there has not been
any research that compares the efficacy of NE versus PSO for
unsupervised controller adaptation in a one predator (pursuer)
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versus one prey (evader) competitive co-evolution pursuit-
evasion simulation. Notable exceptions in closely related
research include Di Gesu et al. [6], who compared PSO
and a Genetic Algorithm (GA) in experiments that simulated
multiple predators attempting to capture a single prey in the
least amount of time. Lee et al. [19] compared PSO and
a GA for simulating predator-prey dynamics as a means of
modeling a genetic regulatory network.

Neuro-Evolution (NE), combined with a simulated com-
petitive co-evolution process has proven to be an effective
method for adapting ANN controllers that accomplish a
disparate range of tasks including artificial creature design
[33], multi-agent computer games [34], and pursuit-evasion
using simulated and real robots [24].

Recently, competitive co-evolution versions of PSO have
been elucidated as an effective means for solving a disparate
range of tasks. For example, evolving agents to play board
games [1], [11], [22], game theory strategies [12] and multi-
objective function optimization [13], [21], [32]. Also, various
versions of non co-evolutionary PSO have been applied to
the unsupervised adaptation of ANN controller connection
weight values [29], [25].

This paper presents, for a one pursuer, one evader task, a
comparison of pursuit and evasion behaviors competitively
co-evolved by PSO and NE methods. PSO and NE were
selected as the comparative methods since both approaches
have been successfully applied as a means of evolving con-
nection weights in ANN controllers. However, the efficacy
of both approaches have not been compared in the context
of a one pursuer and one evader competitive co-evolution
pursuit-evasion task.

A. Research Goals

1) To comparatively evaluate PSO versus NE as methods
for evolving ANN controllers in a competitive co-
evolution pursuit-evasion task.

2) To measure the diversity of the fittest evolved predator
and prey ANN controllers and relate this diversity
to the task performances of PSO versus NE evolved
pursuit and evasion behaviors.

B. Research Hypotheses

1) Based on previous research [28]. PSO, comparative
to NE, will result in overall more effective pursuit
and evasion behaviors (according to task performance
measures defined for this study).



2) Based on previous research [26], PSO will tend to
evolve ANN controllers with a higher connection
weight diversity compared to NE evolved controllers.

II. METHODS

The competitive co-evolution approach tested in this study
uses two populations of individuals (ANN controllers) that
compete against each other, where each population aims to
evolve the fittest behavior. One population adapts behaviors
for predator agents, and the other adapts behaviors for prey.
Within each population, behaviors compete for the role of the
fittest behavior. The fittest behaviors then compete against
each other in the context of the pursuit-evasion task. Each
behavior is represented as a particle (PSO) or a genotype
(NE). In either case, a particle or genotype is a vector of
floating point values that represents the connection weights
of a controller.

A. Particle Swarm Optimization (PSO)

PSO models a set of potential solutions as a swarm of
particles that move about in a virtual search space. Each
particle has a position and a velocity vector that is updated
at each algorithm iteration. A velocity update consists of:
(1) A cognitive component (c1) which uses each particles
personal best (pbest) solution, (2) A social component (c2)
which uses a neighborhood best solution (nbest), and (3) An
inertia coefficient (φ) which slows particle velocity over time
to facilitate swarm convergence. Each algorithm iteration
(section II-D), a particle’s velocity is added to its current
position. This study used a local best lbest neighborhood
structure [17] for the social component of the velocity update.

We used a competitive co-evolution version of the Charged
PSO method [2] that implemented two competing swarms.
For all experiments, half the particles were given a positive
charge equal to one. This meant that half the particles (in
a given swarm) explored new solutions while the other half
exploited current solutions as a means of controller adapta-
tion. In order to apply PSO to dynamic fitness landscapes
(such as observed in competitive co-evolution [31]), the
cognitive component needs to be periodically updated [3]. To
accomplish this, the fittest pbest position vector in the swarm
was periodically re-evaluated against the opposing swarm. If
the resulting fitness differed by more than 1.0% (of maximum
fitness) then all pbest vectors in the swarm were re-evaluated.
This re-evaluation technique was taken from Adaptive PSO
[3]. Although this requires more fitness evaluations at each
simulation iteration, comparative to the NE method, such an
approach prevents noisy fitness evaluations from disrupting
the adaptation process and often gives better results [27].
Particle velocity (VMax) was initialized to zero and bounded
by a fixed range (table I).

B. Neuro-Evolution (NE)

A competitive co-evolution version of Conventional
Neuro-Evolution (CNE), based on that proposed by Wieland
[37], was used. This method directly encoded and evolved
complete controllers. That is, one genotype encodes all the

parameters (input and output connection weights) of an
ANN controller. After all controllers in each population
have been evaluated (section II-D), recombination occurs.
During recombination, each controller is systematically se-
lected from an elite portion (table I) of each population
and recombined with a partner controller (randomly selected
from the same population). Enough child controllers are
produced in order to completely replace each population.
A child genotype is produced via recombing two parent
genotypes using single point crossover [7], and mutation with
a Gaussian distribution [7]. The mutation operator changes
each gene (connection weight) by a random value in a given
range with a fixed degree of probability (table I).

C. Predator and Prey Genotypes and Particles

The term genotype and particle both refer to a string of
floating point values (a) that represents the connection weight
values of a predator or prey ANN controller. Genotype and
particle are the terms used when NE and PSO are used
for adapting agent behavior, respectively. Where, a directly
encodes a controller, and is a string of 148 (predators) and
222 (prey) floating point values. Predator controllers consist
of weights fully connecting 13 sensory input neurons to
eight hidden layer to four motor output neurons (figure 1:
left). Prey controllers consist of weights fully connecting 17
sensory input neurons to nine layer neurons to six motor
output neurons (figure 1: right). Also, there is one bias
neuron for the input and hidden layers for predator and
prey controllers (not illustrated in figure 1). Each connection
weight is initialized to a value in a fixed range (table I), and
can change to any value during the adaptation process.

D. Genotype / Particle Evaluation

For both the NE and PSO methods, each controller in a
given population is systematically evaluated against 20 ran-
domly selected opponent controllers. Opponents are selected
from: (1) The opposing population, (2) A Hall of Fame [31],
or (3) In the case of PSO, the opposing population’s pbest
position vectors. For each pairing of controllers, six pursuit-
evasion games are played. The evaluation and assignment of
fitness to all controllers in both populations is one iteration
in the PSO and NE competitive co-evolution process.

III. PURSUIT-EVASION TASK

The pursuit-evasion task requires one predator agent to
capture one prey agent. Prey capture occurs when a predator
occupies the same grid cell as the prey. One predator and
one prey agent are initialized to random positions in the
environment, at a minimum Euclidean distance of two, and
a maximum distance of 16.

A. Simulation Environment

The simulation environment is a bounded two dimensional
grid of 25 x 25 cells. One predator, one prey and one
food unit can occupy any x, y position. At each iteration
of a pursuit-evasion game, agents can move in one of
eight directions. Predators can move one grid cell per game



iteration (using one energy unit). Prey can move one grid cell
per game iteration (using two energy units). To give the prey
an advantage, it is also able to jump a distance of two cells
per game iteration, but at a cost of four energy units. Agents
may also opt to stand still, which uses no energy. Each agent
begins with 100 energy units. Consumption of one food unit
by a prey replenishes six energy units. The predator does
not consume food units. Table I presents the simulation,
NE, and PSO parameter settings used for the pursuit-evasion
task. The parameters φ, c1, and c2 were selected based on
the study of Van den Bergh [35]. Other parameter values
were derived experimentally and found to work well for
this pursuit-evasion task. Minor changes to these parameter
values were found to yield similar results.

The environment is populated with 70 food units, that as-
sume one of two food distributions (for a given experiment).
These distributions are referred to as diagonal and corner
(table I). The diagonal distribution uniformly places 70 food
units across a strip 70 grid cells wide stretching from the
bottom left hand corner of the environment to the top right
hand corner. The corner distribution uniformly places 100
food units across a patch of 5 x 5 cells in each corner. We
elected to use a greater number of food units for the corner
distribution in order to test the impact of more food units
upon pursuit and evasion behaviors.

IV. PREDATOR AND PREY AGENTS

A. Detection Sensors

Four food detection and four opponent detection sensors
cover four sensor quadrants. This provides an agent with a
360 degree field of view. Each sensor quadrant is positioned
at the front, back, left and right of an agent. A sensor
quadrant’s maximum length and width are defined as one
third of the environment’s width. Detection sensors are
always active, and sensor values are equal to the Euclidean
distance to the closest food unit or opponent.

Each food detection sensor q, returns the distance between
this agent (v) and the location of the closest food unit in the
quadrant of sensor q. If no food units are detected by q then
the sensor value is equal to the maximum range of q.

Each opponent detection sensor p, returns the distance
between v and the location of the closest opponent in the
quadrant of sensor p. If no opponents are detected by p then
the sensor value is equal to the maximum range of p.

B. Artificial Neural Network (ANN) Controller

A recurrent ANN [8] controller maps sensory inputs to
motor outputs for predator and prey agents. The controller
for the predator (figure 1: left), fully connects 13 sensory
input neurons ([SI-0, SI-12]) to eight hidden layer neurons,
to four motor outputs ([MO-0, MO-3]). The controller for
the prey (figure 1: right), fully connects 17 sensory input
neurons ([SI-0, SI-16]) to nine hidden layer neurons, to six
motor outputs ([MO-0, MO-5]). For both controllers, input
neurons [SI-0, SI-3] accept inputs from four food detection
sensors. Input neurons [SI-4, SI-7] accept inputs from four

TABLE I
PSO, NE, AND SIMULATION PARAMETERS.

PSO Parameters
Swarm Size 32
Number of PSO iterations 1500
Inertia Weight (φ) 0.72
Cognitive Term (c1) 1.42
Social Term (c2) 1.42
Velocity Max (V Max) / Initialization 4 / 0
Neighborhood topology lbest
Neighborhood size 3

Charged PSO Parameters
Core Radius (Rc) 10
Perception Limit (Rp) 100
Charge(Q) 1

NE Parameters
Population size 32
Number of NE generations 1500
Mutation probability 0.05
Mutation rate per gene (σ) 1
Elite portion 0.5
Gene (weight) value initialization [-1.0, 1.0]
ANN sensory input neurons (Predator/Prey) 13 / 17
ANN hidden layer neurons (Predator/Prey) 8 / 9
ANN motor output neurons (Predator/Prey) 4 / 6

Simulation Parameters
Iterations per pursuit-evasion game 70
Simulation runs 20
Games played per evaluation 120
Environment width / length 25
Number of food units 70 / 100
Energy per food unit 6
Initial agent positions Random
Initial agent energy 100
Prey movement cost 2
Prey jump cost 4
Prey jump distance 2
Predator movement cost 1
Predator / Prey movement distance 1
Sensor noise (σ) 0.1
Food distribution Diagonal / Corner
Hall of Fame size 15
Hall of Fame update (iterations/generations) 50

agent detection sensors. Sensory input neuron SI-8 accepts
the opponents last position (one of eight directions) as input.

For the predator, input neurons [SI-9, SI-12] accept motor
output layer neuron activation values from the previous game
iteration. For the prey, sensory input SI-9 indicates if the prey
is situated on a food cell. Input SI-10 indicates the current
energy of the agent, and input neurons [SI-11, SI-16] accept
motor output layer neuron activation values from the previous
game iteration. For both the predator and prey, hidden and
output neurons are hyperbolic tangent units [14]. The number
of hidden layer neurons were determined experimentally, and
found to enable the evolution of effective pursuit-evasion
behaviors. All sensor input values are normalized to the
active range of the hyperbolic function [-1.5, 1.5], and output
values are in the range [-1.0, 1.0]. After sensory input
normalization Gaussian noise (table I) was applied to each
sensory input value in order to simulate sensor inaccuracies.



Fig. 1. Predator (left) and Prey (right) ANN controllers. SI: Sensory Input, MO: Motor Output.

C. Action Selection

At each game iteration, agents can move in one of eight
directions. Predator agents are able to move one grid cell
per game iteration at a cost of one energy unit. Prey agents
can move one grid cell per game iteration at a cost of two
energy units, or jump a distance of two at a cost of four
energy units. At each game iteration agents may also opt
to stand still, which uses no energy. An agent’s direction of
movement is calculated from the controller motor outputs
MO-0, MO-1, MO-2, and MO-3 (figure 1), as follows.
• MO-0, MO-1:

– If MO-0 > 0.0, and MO-1 < 0.0: then move
backwards.

– If MO-0 > 0.0, and MO-1 > 0.0: then move
forward

– If MO-0 ≤ 0.0: then stand still.
• MO-2, MO-3:

– If MO-2 > 0.0, and MO-3 < 0.0: then move to the
left.

– If MO-2 > 0.0, and MO-3 > 0.0: then move to the
right.

– If MO-2 ≤ 0.0: then stand still.
The prey agent includes two additional motor output nodes

that operate as follows.
• If MO-4 > 0.0: If the prey is on a food cell, then the

prey eats and does not move.
• If MO-5 > 0.2: then the prey jumps.

D. Agent Performance Evaluation

This section details the predator and prey performance
measures: (1) Predator fitness, (2) Prey fitness, (3) Number
of games won, (4) Food consumed and (5) Time to capture.
The latter two metrics are a measures of prey and predator
success, respectively. The predator and prey fitness values
were calculated during the PSO and NE adaptation processes,
where as the other performance measures are calculated
according to the following post-hoc process. First, after the

completion of 20 simulation runs of the NE and PSO con-
troller adaptation processes, the fittest PSO evolved predator
and NE evolved prey are selected from the PSO and NE runs.
Each of the 20 selected PSO predators is played against each
of the 20 selected NE prey. Each predator and prey pairing
is executed for 100 pursuit-evasion games. No controller
adaptation occurs during these games. Second, the fittest NE
evolved predator and PSO evolved prey are selected from the
same PSO and NE runs. Each of the 20 selected NE predators
is played against each of the 20 selected PSO prey. Each
predator and prey pairing is executed for 100 pursuit-evasion
games. Averages are calculated (over all games played) for
the number of games won, food consumed and time to
capture task performance measures.

1) Predator Fitness: gη,v calculates a fitness score based
on the distance between predator v and the prey, and the
portion of the environment explored during a game.

gη,v = C + (1− (
D

Dmax
)) +

U

I
(1)

Where , C equals two if the predator v captures the prey,
otherwise C equals zero,

D is the average distance between the predator and
the prey during a game,

Dmax is the maximum distance between the agents,
U is the number of grid cells that the predator visits

during its lifetime, where no cell is counted twice,
I is the number of iterations in a game.
Predator v aims to maximize this fitness function.
2) Prey Fitness: gη,w calculates a fitness based on how

many game iterations it evades capture, and the portion of
the environment explored during a game.

gη,w = (
F

Fmax
· 4) + (1− (

S

I
)) +

I

Imax
+

U

I
(2)

Where , F is the total number of food units consumed,
Fmax is the maximum number of available food units,



S is the number of game iterations for which the prey
was in the range of predator sensors,

Imax is the maximum number of iterations in a game.
Prey agent w aims to maximize this fitness function.
3) Number of Games Won: A predator wins a pursuit-

evasion game if it captures the prey during the game. A prey
wins the game if it is not captured and survives the maximum
number of iterations in a game (70 iterations). For each of the
100 games played for the fittest predator and prey (evolved
by NE and PSO), the number of games won by the predator
and the prey is recorded.

4) Food Consumed: The average number of food units
consumed during a game provides an indication of the ef-
fectiveness of the fittest prey’s evolved behavior. An effective
prey behavior is one that allows the prey to evade capture
for the maximum number of game iterations, and maximize
the number of food units consumed.

5) Time to Capture: This is the average number of game
iterations taken for a predator to capture the prey, and
provides an indication of the efficacy of the fittest pursuit
behavior. An effective pursuit behavior is one that captures
the prey in the least number of game iterations. Time to
capture is calculated over games that lasted for less than 70
game iterations (maximum game length), since the games
won metric indicates predator failure (in the case of not
capturing the prey after 70 iterations) and prey success (in
the case of evading the predator for 70 iterations).

E. Controller Connection Weight Diversity

For simplicity we selected to use a Euclidean distance met-
ric [26] in order to measure connection weight diversity for
controllers adapted by PSO and NE. Each solution is a string
of floating point values that encodes the connection weight
values of the fittest predator and prey controllers evolved in
each simulation run. Pairwise diversity is measured by d:

d(a, b) =

√√√√
N∑

i=0

(ai − bi)2

Where, d(a, b) is the pairwise diversity between member
a and member b (section II-C). Solution diversity for a given
method is calculated as the average pairwise diversity over
the 20 fittest solutions (selected from each simulation run).

V. EXPERIMENTS

Experiments apply PSO and NE for co-evolving predator
and prey controllers in a given environment. All experiments
were implemented using the Computational Intelligence Li-
brary (CIlib)1. Each experiment executes the PSO or NE
method for 20 simulation runs. A simulation is executed
for 1500 iterations (generations). One iteration consists of
a given controller being evaluated in 120 pursuit-evasion
games against every controller in the opponent population.

1The CIlib home page can be found at http://www.cilib.net/.

Each evaluation corresponds to one agent lifetime, or the
maximum game duration (70 iterations in table I).

The first experimental objective is to maximize:
1) Predator fitness and the number of games won in

environments containing a diagonal and corner food
distribution (section III-A).

2) Prey fitness and the number of games won in en-
vironments containing a diagonal and corner food
distribution (section III-A).

The second experimental objective is:
1) For the predator to minimize the time to capture

(number of game iterations) the prey.
2) For the prey to maximize the number of food units

consumed during a game.

A. Method Comparisons

Predator and prey controllers evolved by NE and PSO are
compared with respect to the average fitness and number of
games won. Also, the average time to capture and the amount
of food consumed are used as measures for the efficacy of
evolved pursuit and evasion behaviors, respectively.

1) Predator and Prey Fitness: Diagonal and Corner Food
Distribution: For each simulation run, the average predator
(Ap) and prey (Ay) fitness is calculated (every 10 iterations)
over all controllers in a population. Also, the best predator
(Bp) and prey (By) fitness is calculated. Figures 2 and 3
present the average of Ap, Ay, Bp and By, calculated over 20
simulation runs, for the diagonal and corner food distribu-
tions, respectively. Fitness values presented are normalized,
so as a value of 1.0 indicates the highest performance, and
a value of 0.0 indicates the lowest performance.

To determine if there is a statistical significance of dif-
ference between the fitness’s of PSO versus NE evolved
predators, and PSO versus NE evolved prey, an independent
t-test [10] was applied. Statistical tests were applied to fitness
data of the predator and prey evolved in the environment
with a diagonal and the environment with a corner food
distribution. A statistical significance of 0.05 was selected,
and the null hypothesis stated that the data sets do not
significantly differ. The statistical comparison found that,
for environments containing the diagonal and corner food
distributions, predators and prey evolved by PSO yielded a
significantly higher task performance (in terms of Ap and
Ay fitness) over predators and prey evolved by NE in the
same environments. The comparison also elucidated that PSO
predators evolved in environments containing these same
food distributions, yielded a significantly higher Bp fitness
comparative to NE. However, for both food distributions,
there was no significant difference between NE and PSO
in terms of By.

Table II presents the P values calculated for t-tests con-
ducted for Ap, Ay, Bp and By comparisons between PSO and
NE. In table II, a value of 0.0001 indicates that a value equal
to or less than 0.0001 is calculated by the t-test. Values in
bold indicate that the null hypothesis is accepted and that
there is no significant difference between task performance
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Fig. 2. Fitness of NE (left) versus PSO (right) predator and prey evolved in the environment with a diagonal food distribution.
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Fig. 3. Fitness of NE (left) versus PSO (right) predator and prey evolved in the environment with a corner food distribution.

TABLE II
T-TEST P VALUES FOR FITNESS COMPARISON OF PSO VERSUS NE

EVOLVED PREDATORS AND PREY.

Diagonal Food Distribution in Environment
PSO vs NE Evolved Predator (Bp) 0.0001
PSO vs NE Evolved Prey (By) 0.95
PSO vs NE Evolved Predator (Ap) 0.0001
PSO vs NE Evolved Prey (Ay) 0.0001

Corner Food Distribution in Environment
PSO vs NE Evolved Predator (Bp) 0.0001
PSO vs NE Evolved Prey (By) 0.27
PSO vs NE Evolved Predator (Ap) 0.0001
PSO vs NE Evolved Prey (Ay) 0.0001

results. Values not in bold indicate that the null hypothesis
is rejected and there is a significant performance difference.

The other task performance results (in addition to fitness)
are presented in tables III and IV. Values in parentheses are
standard deviations calculated over all games played. The
games won result does not have a standard deviation since
this measure denotes the percentage of fittest predators and
prey (for all games played) that win games.

2) Number of Games Won: Diagonal Food Distribution:
As presented in table III, the higher fitness of PSO evolved
predators (figure 2) did not translate to PSO predators win-
ning a greater portion of games, comparative to NE evolved
predators. That is, NE evolved predators won 41.02% of
games versus PSO evolved predators that won 32.65%.
Similarly, NE evolved prey won 67.44% of games, versus
PSO evolved prey that won only 58.91% of games.

TABLE III
TASK PERFORMANCE RESULTS FOR AGENTS EVOLVED IN ENVIRONMENT

WITH diagonal FOOD DISTRIBUTION. NA: NOT APPLICABLE.

NE Predators vs PSO Prey: Diagonal Distribution
Prey Predator

Games Won (%) 67.44 41.02
Time to Capture NA 40.22 (17.44)
Food Consumed 16.93 (7.59) NA

PSO Predators and NE Prey: Diagonal Distribution
Prey Predator

Games Won (%) 58.91 32.65
Time to Capture NA 39.79 (17.49)
Food Consumed 15.83 (7.75) NA

3) Number of Games Won: Corner Food Distribution:
Also, the higher fitness of PSO evolved predators (figure 3)
did not mean these PSO predators winning a greater portion
of games, comparative to NE evolved predators. That is, table
IV presents that NE evolved predators won 35.75% of games
versus PSO evolved predators that won 22.10%. Similarly,
NE evolved prey won 78.20% of games, versus PSO evolved
prey that won only 64.27% of games.

4) Time to Capture and Food Consumed: Diagonal Food
Distribution: The time to capture results presented in table
III indicate that there is no significant difference between the
PSO and NE evolved predators. That is, differences between
the average amount of time taken for pursuit behaviors to
capture a prey (evolved by PSO compared to NE) were
negligible. However, this result indicates that both PSO
and NE evolved pursuit behaviors that, when successful in



TABLE IV
TASK PERFORMANCE RESULTS FOR AGENTS EVOLVED IN ENVIRONMENT

WITH corner FOOD DISTRIBUTION. NA: NOT APPLICABLE.

NE Predators vs Prey: Corner Distribution
Prey Predator

Games Won (%) 78.20 35.75
Time to Capture NA 36.63 (19.62)
Food Consumed 16.84 (5.67) NA

PSO Predators vs NE Prey: Corner Distribution
Prey Predator

Games Won (%) 64.27 22.10
Time to Capture NA 38.47 (19.49)
Food Consumed 14.67 (6.03) NA

capturing a prey, did so approximately half way through a
game’s maximum duration. Also, no significant difference
was observed for the average number of food units consumed
in environments with the fittest PSO and NE evolved prey.

5) Time to Capture and Food Consumed: Corner Food
Distribution: As with the time to capture results for predators
evolved in the environment containing the diagonal food
distribution, there was no significant difference between the
time to capture for predators evolved by PSO and NE with
corner food distributions (table IV). This result also indicates
that both PSO and NE evolved pursuit behaviors that, when
successful in capturing a prey, did so approximately half way
through a games maximum duration. As was the case for the
environment with diagonal food distribution, no significant
difference was observed for the average food consumed in
environments with the fittest PSO and NE evolved prey.

B. Performance Analysis

As stated in section IV-D, we elected to use multiple be-
havioral based measures, in addition to predator and prey fit-
ness functions. This was necessary since fitness comparisons
only illustrate progress and counter progress of pursuit and
evasion behaviors and do not highlight if evolutionary time
corresponds to true progress. That is, the fitness landscape
of both predator and prey populations continuously change
due to the Red Queen affect [36].

Results indicate that during the PSO adaptation process,
pursuit and evasion behaviors were derived that yielded a
significantly higher average fitness comparative to pursuit
and evasion behaviors evolved during the NE adaptation
process. These results held for predators and prey evolved
in environments containing the diagonal food distribution
(Bp, Ap and Ay in figure 2) and environments containing
the corner food distribution (Bp, Ap and Ay in figure 3).

In a post-hoc analysis, where the fittest PSO and NE
adapted controllers were played against each other in pursuit-
evasion games, NE was found to be more effective (compar-
ative to PSO) at deriving pursuit and evasion behaviors. The
effectiveness of NE evolved controllers was supported by a
greater number of games won in environments containing the
diagonal (table III) and corner (table IV) food distributions.
For both food distributions there was negligible difference
between the food consumed by PSO and NE adapted prey.

TABLE V
CONTROLLER WEIGHT DIVERSITY: 20 FITTEST AGENTS EVOLVED IN 20

SIMULATION RUNS BY NE AND PSO.

Diagonal Food Distribution in Environment
Fittest PSO Adapted Prey 166.27
Fittest PSO Adapted Predator 177.80
Fittest NE Evolved Prey 66.45
Fittest NE Evolved Predator 60.93

Corner Food Distribution in Environment
Fittest PSO Adapted Prey 159.17
Fittest PSO Adapted Predator 179.21
Fittest NE Evolved Prey 63.65
Fittest NE Evolved Predator 57.07

Also, there was no significant different between the time to
capture for PSO and NE adapted predators. This indicates
that both PSO and NE adapted prey derived equally effective
food foraging behaviors (indicated in tables III and IV). Also,
PSO and NE adapted predators derived equally effective
pursuit behaviors. This is indicated by comparable time to
capture values in tables III and IV. These results partially re-
fute hypothesis 1 (section I-B) given that although predators
and prey adapted during the PSO process yielded a higher
fitness (according to the predator and prey fitness functions
given in section IV-D), NE evolved controllers comparatively
won a greater number of games.

Table V presents the diversity in controller connection
weight values calculated (over 20 simulation runs) for the
fittest predator and prey evolved by NE and PSO. These
results indicate that the fittest PSO controllers, on average,
maintain a higher weight diversity (more than double), com-
parative to NE evolved controllers. This higher diversity was
true for environments containing both the food distributions.
It is theorized that the lower controller weight diversity in
the fittest NE evolved predators and prey results in the sig-
nificantly lower fitness (comparative to PSO) of NE evolved
predators and prey (figures 2 and 3); Where predator and prey
fitness was calculated according to the fitness functions given
in section IV-D. The exception was the average best prey
fitness (By) measured for PSO and NE. This observation is
supported by related work [26], and also supports the second
hypothesis defined for this study (section I-B).

VI. CONCLUSIONS

This research detailed a comparative study of two unsu-
pervised learning techniques (PSO and NE) as methods for
adapting ANN controllers in a competitive co-evolution task.
The task was a one predator versus one prey agent pursuit-
evasion task conducted in a discrete simulation environment.
The task was for the predator (pursuer) to capture the prey
(evader) as quickly as possible, and for the prey to evade
capture for the duration of a pursuit-evasion game. Results
indicated that pursuit and evasion behaviors adapted during
the PSO process yielded a higher average fitness comparative
to those evolved by NE. The fittest controllers evolved by
PSO also maintained a higher controller weight diversity
comparative to those evolved by NE. However, NE evolved



pursuit and evasion behaviors won a greater number of
pursuit-evasion games when played in a set of post controller
adaptation games.

Future work intends to investigate the relationship between
high controller connection weight diversity in PSO solutions,
and the lower diversity but overall more effective NE evolved
behaviors, that were observed in this research. Also, we
intend to extend the current one predator and one prey
competitive co-evolution task to an n-predator and n-prey
collective behavior task in order to examine the impact of
cooperative and competitive co-evolution on PSO and NE as
controller design methods.
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